Menu
Log in



  • Home
  • News
  • DMBoK Figure 81 Kimball's Data Warehouse Chess Pieces


DMBoK Figure 81 Kimball's Data Warehouse Chess Pieces

10/23/2024 7:00 AM | Anonymous member (Administrator)

Kimball’s Dimensional Data Warehouse is the other primary pattern for DW development. Kimball defines a data warehouse simply as “a copy of transaction data specifically structured for query and analysis” (Kimball, 2002). The ‘copy’ is not exact, however. Warehouse data is stored in a dimensional data model. The dimensional model is designed to enable data consumers to understand and use the data, while also enabling query performance. It is not normalized in the way an entity relationship model is.

Often referred to as Star Schema, dimensional models are comprised of facts, which contain quantitative data about business processes (e.g., sales numbers), and dimensions, which store descriptive attributes related to fact data and allow data consumers to answer questions about the facts (e.g., how many units of product X were sold this quarter?) A fact table joins with many dimension tables, and when viewed as a diagram, appears as a star. (See Chapter 5.) Multiple fact tables will share the common, or conformed, dimensions via a ‘bus’, similar to a bus in a computer. Multiple data marts can be integrated at an enterprise level by plugging into the bus of conformed dimensions.

The DW bus matrix shows the intersection of business processes that generate fact data and data subject areas that represent dimensions. Opportunities for conformed dimensions exist where multiple processes use the same data. Table 27 is a sample bus matrix. In this example, the business processes for Sales, Inventory, and Orders all require Date and Product data. Sales and Inventory both require Store data, while Inventory and Orders require Vendor data. Date, Product, Store, and Vendor are all candidates for conformed dimensions. In contrast, Warehouse is not shared; it is used only by Inventory.

The enterprise DW bus matrix can be used to represent the long-term data content requirements for the DW/BI system, independent of technology. This tool enables an organization to scope manageable development efforts. Each implementation builds an increment of the overall architecture. At some point, enough dimensional schemas exist to make good on the promise of an integrated enterprise data warehouse environment. This figure represents Kimball’s Data Warehouse Chess Pieces view of DW/BI architecture. Note that Kimball’s Data Warehouse is more expansive than Inmon’s. The DW encompasses all components in the data staging and data presentation areas.

  • Operational source systems: Operational / transactional applications of the Enterprise. These create the data that is integrated into the ODS and DW. This component is equivalent to the application systems in the CIF diagram.
  • Data staging area: Kimball’s staging includes the set of processes needed to integrate and transform data for presentation. It can be compared to a combination of CIF’s integration, transformation, and DW components. Kimball’s focus is on efficient end-delivery of the analytical data, a scope smaller than Inmon’s corporate management of data. Kimball’s enterprise DW can fit into the architecture of the data staging area.
  • Data presentation area: Similar to the Data Marts in the CIF. The key architectural difference being an integrating paradigm of a ‘DW Bus,’ such as shared or conformed dimensions unifying the multiple data marts.
  • Data access tools: Kimball’s approach focuses on end users’ data requirements. These needs drive the adoption of appropriate data access tools.


Powered by Wild Apricot Membership Software